login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Search: keyword:new
     Sort: relevance | references | number | modified | created      Format: long | short | data
G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x)))^5.
+0
0
1, 5, 40, 380, 3970, 44051, 509575, 6077435, 74194780, 922644310, 11646083631, 148827827450, 1921724362880, 25034267112600, 328614891689845, 4342322118727300, 57715241768897445, 771087466276360970, 10349495416322497575, 139486475071720234920, 1886980259513934080860, 25613816043115261657425
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(s*k,n-k).
G.f.: (1/x) * Series_Reversion( x / (1+x+x^2)^5 ).
G.f.: B(x)^5, where B(x) is the g.f. of A365189.
PROG
(PARI) a(n, s=1, t=5) = sum(k=0, n, binomial(t*(n+1), k)*binomial(s*k, n-k))/(n+1);
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^2)^5)/x)
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Sep 20 2024
STATUS
approved
G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x)))^4.
+0
0
1, 4, 26, 200, 1691, 15180, 142038, 1370076, 13526645, 136024876, 1388394234, 14346699052, 149790104030, 1577765967600, 16745718467070, 178912981116840, 1922688816819276, 20769064846817136, 225384498769815750, 2455985319885345820, 26862562977746930145, 294807644917408047060
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(s*k,n-k).
G.f.: (1/x) * Series_Reversion( x / (1+x+x^2)^4 ).
G.f.: B(x)^4, where B(x) is the g.f. of A365183.
PROG
(PARI) a(n, s=1, t=4) = sum(k=0, n, binomial(t*(n+1), k)*binomial(s*k, n-k))/(n+1);
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^2)^4)/x)
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Sep 20 2024
STATUS
approved
Expansion of (1/x) * Series_Reversion( x * (1-x-x^2)^4 ).
+0
0
1, 4, 30, 272, 2737, 29380, 329614, 3818540, 45329440, 548511612, 6740687924, 83898110660, 1055441468145, 13398494365088, 171422870731600, 2208161418665872, 28614197357895055, 372754395074051500, 4878709294080115494, 64123505084010848580, 846018700129069313495
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(4*n+k+3,k) * binomial(5*n-k+3,n-2*k).
G.f.: B(x)^4, where B(x) is the g.f. of A365188.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^2)^4)/x)
(PARI) a(n, s=2, t=4, u=0) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Sep 20 2024
STATUS
approved
Decimal expansion of 1 bit in J/K.
+0
0
9, 5, 6, 9, 9, 2, 9, 6, 1, 6, 9, 2, 9, 0, 7, 9, 3, 1, 5, 0, 1, 5, 9, 2, 1, 1, 1, 2, 5, 9, 1, 1, 0, 0, 2, 0, 5, 3, 6, 8, 7, 1, 1, 8, 5, 0, 0, 4, 3, 5, 2, 0, 5, 6, 3, 4, 6, 4, 6, 2, 7, 3, 4, 4, 2, 7, 0, 4, 4, 4, 1, 0, 7, 7, 8, 8, 3, 7, 0, 3, 9, 4, 0, 6, 5, 1, 9
OFFSET
-23,1
FORMULA
Exactly equal to log(2) * 1.380649 * 10^-23 under the 2019 SI redefinition.
EXAMPLE
9.569929616929079315015921112591100205368711850043520563464627344270444107788370394 * 10^-24 J/K.
PROG
(PARI) 1.380649e-23*log(2) \\ Charles R Greathouse IV, Sep 20 2024
CROSSREFS
Cf. A070063.
KEYWORD
cons,nonn,new
AUTHOR
STATUS
approved
Numbers k such that k^k is not a cube and can be expressed as (a^3 + b^3)/2 for positive integers a, b.
+0
0
76, 112, 172, 364, 427, 532
OFFSET
1,1
COMMENTS
Sequence is equal to all terms in A267415 that are not in A376279.
If a or b are allowed to be 0, then 2, 4, 128, 256, 686, 1372, 2000, 4000, 4394, ... are also terms.
EXAMPLE
76^76 is not a cube and is equal to (523974089123227128080087214816032969930445946880^3 + 314384453473936276848052328889619781958267568128^3)/2.
112^112 is not a cube and is equal to (39739105680019344543609706294181022974041418385894471812303329593638887882752^3 + 13246368560006448181203235431393674324680472795298157270767776531212962627584^3)/2.
172^172 is not a cube and is equal to (186302856478727791003189416646781404088735216286873615701287403506960347135763572314025783484358072432973760558663310530664464384^3 + 26614693782675398714741345235254486298390745183839087957326771929565763876537653187717969069194010347567680079809044361523494912^3)/2
CROSSREFS
KEYWORD
nonn,more,new
AUTHOR
Chai Wah Wu, Sep 19 2024
STATUS
approved
a(n) is the minimum volume of an integer-sided cuboid having the same surface as a cube with edge length n.
+0
0
1, 8, 13, 36, 37, 104, 73, 188, 121, 252, 181, 428, 253, 540, 337, 764, 433, 828, 541, 1196, 661, 1448, 793, 1476, 937, 2024, 1093, 2160, 1261, 2592, 1441, 2628, 1633, 3464, 1837, 3884, 2053, 3708, 2281, 4796, 2521, 5148, 2773, 5616, 3037, 5436, 3313, 6660, 3601
OFFSET
1,2
COMMENTS
Conjecture: From the integer-sided cuboids with same surface 6*n^2 always the one with the smallest edge length has the minimum volume. If there are several integer-sided cuboids having the smallest edge length, then the one with the smallest second smallest edge length has the minimum volume (checked up to a(1000)).
The maximum volume is always A000578(n) = n^3.
LINKS
Felix Huber, Maple programs
Eric Weisstein's World of Mathematics, Cuboid
EXAMPLE
a(6) = 104: because from the five integer-sided cuboids (2, 2, 26), (2, 5, 14), (2, 6, 12), (3, 6, 10), (6, 6, 6) having the same surface as a cube with edge length 6 (see example in A375785) has (2, 2, 26) with 2*2*26 = 104 the smallest volume.
MAPLE
See Huber link.
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Felix Huber, Sep 17 2024
STATUS
approved
a(n) is the number of distinct integer-sided cuboids having the same surface as a cube with edge length n.
+0
0
1, 1, 3, 3, 5, 5, 5, 7, 9, 9, 9, 13, 9, 9, 19, 15, 13, 19, 13, 23, 19, 19, 17, 29, 25, 19, 27, 23, 21, 41, 21, 31, 35, 29, 33, 45, 25, 29, 35, 51, 29, 41, 29, 45, 61, 39, 33, 61, 33, 57, 51, 45, 37, 63, 61, 51, 51, 49, 41, 97, 41, 49, 61, 63, 61, 81, 45, 67, 67
OFFSET
1,3
COMMENTS
a(n) is the number of unordered solutions (x, y, z) to x*y + y*z + x*z = 3*n^2 in positive integers x and y.
Conjecture: All terms are odd.
LINKS
Felix Huber, Maple programs
Eric Weisstein's World of Mathematics, Cuboid
EXAMPLE
a(6) = 5 because exactly the 5 integer-sided cuboids (2, 2, 26), (2, 5, 14), (2, 6, 12), (3, 6, 10), (6, 6, 6) have the same surface as a cube with edge length 6: 2*(2*2 + 2*26 + 2*26) = 2*(2*5 + 5*14 + 2*14) = 2*(2*6 + 6*12 + 2*12) = 2*(3*6 + 6*10 + 3*10) = 2*(6*6 + 6*6 + 6*6) = 6*6^2.
MAPLE
See Huber link.
KEYWORD
nonn,new
AUTHOR
Felix Huber, Sep 17 2024
STATUS
approved
Numbers that are the sum of 4 but no fewer nonzero squares and admit a representation with 4 distinct squares.
+0
0
39, 63, 71, 79, 87, 95, 111, 119, 127, 135, 143, 151, 156, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 252, 255, 263, 271, 279, 284, 287, 295, 303, 311, 316, 319, 327, 335, 343, 348, 351, 359, 367, 375, 380, 383, 391, 399, 407, 415, 423, 431
OFFSET
1,1
COMMENTS
Intersection of A004215 and A004433.
EXAMPLE
39 is a term, since it requires 4 squares to be represented and admits the representation 39 = 5^2 + 3^2 + 2^2 + 1^2.
30 is not a term, although it can be represented as a sum of 4 different squares 30 = 4^2+ 3^2 + 2^2 + 1^2 also admits a representation as a sum of 3 squares: 30 = 5^2 + 2^2 + 1^2.
7 is not a term, since although it requires 4 squares to be represented as follows 7 = 2^2 + 1^2 + 1^2 + 1^2, it is noted that 1 is used on more than one occasion.
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Gonzalo Martínez, Aug 26 2024
STATUS
approved
a(n) is the area of the largest rectangle with integer sides that can be inscribed under the parabola y = -x^2 + n and on or above the x-axis.
+0
0
0, 0, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336
OFFSET
0,3
COMMENTS
Given the function defined by f(x) = -x^2 + n, the area of each rectangle inscribed under the parabola associated with f and on the x-axis is modeled by the function g(x) = 2x*(-x^2 + n), where 2x is the base of the rectangle and ( -x^2 +n) is its height. The value of x that maximizes the area is x = sqrt(n/3). However, this value is not always an integer, so x should be chosen as the nearest integer to sqrt(n/3), which corresponds to floor(1/2 + sqrt(n/3 - 1/12)).
FORMULA
a(n) = 2*floor(1/2 + sqrt(n/3 - 1/12))*(-(floor(1/2 + sqrt(n/3 - 1/12)))^2 + n).
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Gonzalo Martínez, Aug 17 2024
STATUS
approved
a(n) is the greatest difference between m and k, with m, k both prime such that k + m = p + q, where (p, q) is the n-th twin prime pair.
+0
0
2, 2, 14, 26, 46, 74, 106, 134, 194, 206, 266, 286, 346, 374, 382, 442, 454, 506, 550, 614, 686, 818, 854, 914, 1034, 1118, 1186, 1226, 1274, 1294, 1606, 1630, 1618, 1702, 1754, 2018, 2042, 2078, 2102, 2174, 2290, 2434, 2546, 2534, 2582, 2626, 2846, 2890, 2950
OFFSET
1,1
COMMENTS
If p and q are twin primes and x is their average, then among all pairs of primes (k, m) such that |x - k| = |x - m|, it is observed that p and q are at the smallest distance from x, which is 1. Our interest lies in finding the pair (m, k) such that the distance to x is maximum and then determining |k - m|.
EXAMPLE
Since the 3rd pair of twin primes is (11, 13), whose sum is 24, and the other pairs of primes that sum to 24 are (5, 19) and (7, 17), the greatest difference is 19 - 5 = 14. Therefore, a(3) = 14.
PROG
(Python)
from itertools import islice
from sympy import isprime, nextprime, primerange
def agen(): # generator of terms
p, q = 2, 3
while True:
if q - p == 2:
s = p + q
yield max(m-k for k in primerange(2, s//2+1) if isprime(m:=s-k))
p, q = q, nextprime(q)
print(list(islice(agen(), 80))) # Michael S. Branicky, Aug 13 2024
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Gonzalo Martínez, Aug 13 2024
STATUS
approved

Search completed in 0.101 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 14:16 EDT 2024. Contains 376072 sequences. (Running on oeis4.)